Nerves are bundles of axons in the peripheral nervous system (PNS) that act as information highways to carry signals between the brain and spinal cord and the rest of the body. Each axon is wrapped in a connective tissue sheath called the endoneurium. Individual axons of the nerve are bundled into groups of axons called fascicles, wrapped in a sheath of connective tissue called the perineurium. Finally, many fascicles are wrapped together in another layer of connective tissue called the epineurium to form a whole nerve. The wrapping of nerves with connective tissue helps to protect the axons and to increase the speed of their communication within the body.

The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. It includes the cranial nerves, spinal nerves and their roots and branches, peripheral nerves, and neuromuscular junctions.

Structure

Each nerve is covered on the outside by a dense sheath of connective tissue, the epineurium. Beneath this is a layer of fat cells, the perineurium, which forms a complete sleeve around a bundle of axons. Perineurial septae extend into the nerve and subdivide it into several bundles of fibres. Surrounding each such fibre is the endoneurium. This forms an unbroken tube from the surface of the spinal cord to the level where the axon synapses with its muscle fibres, or ends in sensory receptors. The endoneurium consists of an inner sleeve of material called the glycocalyx and an outer, delicate, meshwork of collagen fibres. Nerves are bundled and often travel along with blood vessels, since the neurons of a nerve have fairly high energy requirements.

Within the endoneurium, the individual nerve fibres are surrounded by a low-protein liquid called endoneurial fluid. This acts in a similar way to the cerebrospinal fluid in the central nervous system and constitutes a blood-nerve barrier similar to the blood-brain barrier. Molecules are thereby prevented from crossing the blood into the endoneurial fluid. During the development of nerve edema from nerve irritation (or injury), the amount of endoneurial fluid may increase at the site of irritation. This increase in fluid can be visualized using magnetic resonance neurography, and thus MR neurography can identify nerve irritation and/or injury.

Afferent, Efferent, and Mixed Nerves

Some of the nerves in the body are specialized for carrying information in only one direction, similar to a one-way street. Nerves that carry information from sensory receptors to the central nervous system only are called afferent nerves. Other neurons, known as efferent nerves, carry signals only from the central nervous system to effectors such as muscles and glands. Finally, some nerves are mixed nerves that contain both afferent and efferent axons. Mixed nerves function like 2-way streets where afferent axons act as lanes heading toward the central nervous system and efferent axons act as lanes heading away from the central nervous system.

Cranial Nerves

Extending from the inferior side of the brain are 12 pairs of cranial nerves. Each cranial nerve pair is identified by a Roman numeral 1 to 12 based upon its location along the anterior-posterior axis of the brain. Each nerve also has a descriptive name (e.g. olfactory, optic, etc.) that identifies its function or location. The cranial nerves provide a direct connection to the brain for the special sense organs, muscles of the head, neck, and shoulders, the heart, and the GI tract.

Spinal Nerves

Extending from the left and right sides of the spinal cord are 31 pairs of spinal nerves. The spinal nerves are mixed nerves that carry both sensory and motor signals between the spinal cord and specific regions of the body. The 31 spinal nerves are split into 5 groups named for the 5 regions of the vertebral column. Thus, there are 8 pairs of cervical nerves, 12 pairs of thoracic nerves, 5 pairs of lumbar nerves, 5 pairs of sacral nerves, and 1 pair of coccygeal nerves. Each spinal nerve exits from the spinal cord through the intervertebral foramen between a pair of vertebrae or between the C1 vertebra and the occipital bone of the skull.

Medika Life

Medika Life is a digital Health Publication for both the medical profession and the public. Make informed decisions about your health and stay up to date with the latest developments and technological advances in the fields of medicine.

Recent Posts

Strategies to Slash My Dementia Risk: My Journey to Promote Brain Health

A growing body of evidence suggests that the fight against dementia should begin earlier, before…

21 hours ago

Chatbots Can’t Be Trusted, and We Need Tools to Find Fact From Fiction in Them

AI has impacted the lives of everyone around the globe, but we can’t trust its…

21 hours ago

The Recycling Lie – How Corporations Duped Us Into Drowning in Plastic

For too long, a duplicitous fantasy about the purported virtues of recycling has been sold…

23 hours ago

New York Climate Week in an Election Year

Will 2024’s Conference Move the Needle Toward Sustainability Policy Imperatives?

3 days ago

Beyond the Tech: The Most Important Leadership Priority in the Age of AI

We live in the advent of AI, and its impact on industries is just starting.…

1 week ago

Is “Whataboutism” Killing Empathy?

In the Information Age, Criticism of Expressions of Empathy Drives Silos or Silence in Response

2 weeks ago

This website uses cookies. Your continued use of the site is subject to the acceptance of these cookies. Please refer to our Privacy Policy for more information.

Read More